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Abstract

Recent theoretical investigations reveal the dominant role played by a new type of matrix transformation in the theory of microwave networks

composed of multiport elements; this is an extension to multidimensional vector spaces of the well-known scalar fractional bilinear transforma-

tions. Projective matrix transformations have been found to map the scattering matrix, the impedance matrix, and the admittance matrix of an

n-port network embedded in a 2n-port supemetwork. The transfer-scattering matrix and the chain- or ABCD-matrix of a 2n-port network

embedded in a 4n-port supemetwork, are also mapped in a similar manner by matrix transformations of the same type. A fundamental application

of this new transformation is the generalization of the concept of image-parameters known for 2-port networks to that of image-matrices for
2n-port networks. This generalization leads to a rigorous normal-mode analysis of wave-propagation on image-matched chains of cascaded 2n-
port networks.

1. INTRODUCTION

A new and relatively unknown matrix transformation has been

found to play a dominant role in the theory of microwave networks

composed of cascaded multiport elements. The new “fractional bilinear

matrix transformation” or “projective matrix transformation” was

first discovered in the form of a multidimensional mapping of a scatter-

ing matrix, in the context of an investigation of new types of error
modeling and calibration methods for automated network analyzers. 1,2
The extent of its relevance and the dominance of its role in the theory
of microwave networks, composed of multiport elements was, however,
not immediately recognized.

The ability of this type of matrix transform to map impedance
and admittance matrices was subsequently discovered, and led to an

extension of the well-known concept of image-impedance or image-

admittance to 2n-port networks. 3

The concept of image-matched, cascaded chains of 2-port networks

was then extended to that of chains of image-matched 2n-port net-
works, and a very general analysis of the normal wave-modes propagat-
ing on such chains was made possible.

Quite recently, the ability of the fractional bilinear matrix trans-
form to map the transfer-scattering matrix and the chain- or ABCD-
matnx of a 2n-port network, embedded in a 4n-port supemetwork,

was discovered.

One interesting aspect of these latest results is that the parameter-
matnces to be used as representations of the embedding supernetwork,
in the mapping of a T- or ABCD-matrix, are orthogonal transforma-
tions of the matrices to be used in mapping the corresponding S-matrix

or Z- and Y-matrices, respectively. The required orthogonal matrices
are block-permutation matrices.

lt has also been discovered that the renormalization of the scatter-
ing matrix of a multiport network, with respect to a new and different
set of complex, external port-impedances may be considered equivalent
to embedding the network in an array of infinitesimally short, mis-
matched line junctions (a “cluster of junctions”). 4 Here again, the
projective matrix transform provides a general description of the
scattering parameter transformation that performs the renormalization.

ln view of the dominant role of the fractional bilinear matrix
transform in microwave network theory, a partial investigation of its
mapping properties has been conducted. Aspects of fundamental
interest are the invariance and conservation properties of the trans-
formation and them correlation to the response of the networks to be
considered.s

Many more applications of the new matrix transformation are
expected to follow from its recognition as a conspicuous, common
thread among seemingly unrelated developments.

2. THE WELL-KNOWN SCALAR FRACTIONAL
BILINEAR TRANSFORMATION

Scalar fractional bilinear transformations, defined as single-valued
functions of a complex variable, are well-known to microwave engi-

neers. In the theory of calibrated measurements of a complex reflection
coefficient r, this type of transformation is written in the form6:

A.rx+B
rM . –—::—

c.rX+l
(1)

In this context, the transformation (1) represents the relation between

the true complex reflection coefficient rx of a single-port network X

and the “uncalibrated” reflection coefficient reading rM, observed in
an imperfect 4-port reflectometer (Figure 1). This measurement sys-

tem is composed of two cascaded directional couplers and a vector-
voltmeter, connected to their side-arms.

Assuming linearity of the vector-voltmeter readings with respect
to the complex ratio of the side-arm signals r M, the given transforma-

tion ( 1) represents the effects of any mismatch, finite directivity or

imperfect mutual tracking of the two directional couplers, and of

any magnitude-ratio and phase errors in the vector-voltmeter.
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Figure1. Four-porrreflecromoterfor the measurement of complex reflection

cdficient rx. r~ is the observed complex vector tatio of the

stale-arm voltages.

In the analysis of impedance transformers and matching networks,
the scalar fractional bilinear transformation is often written in the
form:

S1l - DET(S) rL
rl . –––_––_ (2)

l-s22. rL

where, DET(S) = S1l S22 - S12S21

In this context, the transformation, represented by equation (2)

expresses the complex reflection coefficient rI, that appears at the

input port 1 of a given 2-port network N, when the output port 2 is
terminated with a single-port load-network with reflection coefficient
rL (Figure 2).

The scattering parameters Sij, appearing in equation (2), character-

ize the 2-port network N that physically performs the transformation
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of the load-reflection PL, connected at its output port, to the input
reflection rI, appearing at its input port. A transformation of this type
represents the basis of the well-known Smith chart, in which case the

transforming network N is a simple segment of uniform, losslesstrans-
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Figure 3. Transformation of an n x n complex scattering matrix SX through a
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In references 1 and 2, a method was developed for computing the
four quadrants Ti of the matrix T from pairs of corresponding Sxi,
SMi matrices. This method provides a way for indirectly characterizing
the embedding supernetwork N from an external analysis of its trans-
formation properties. The method combines a generalized gaussian
condensation, 9 applied to a set of 4n2 homogeneous, scalar linear
equation, and an explicit solution of various linear matrix equations. 10

Subsequently,3 new fractional bilinear matrix transformations,
exemplified by equation (4), were found to describe the mapping of
the Z-matrix ZL and of the Y-matrix YL to the corresponding input-

interface Z- and Y-matrices Z I and YI, seen at the input interface of

2n-port supernetwork N (Figure 4). These new transforms may be
written in the form:

S1l – DET (S) - rL

1–s22. rL

T,, o rL + T12
rl =

T21 . rL + T22

Figure 2. Transformation of a complex reflection coefficient through a 2-port

network.

The scalar fractional bilinear transformation, exemplified in
equations ( 1) and (2), is known to possess at least two remarkable

properties. First, it maps circles in the complex rx-plane to corre-
sponding circles in the complex rM plane. Second, the Cross Ratio

of four arbitrarily chosen complex values in the f’x-plane, is equal
to the cross ratio of the corresponding points in the rM plane (con-
servation of the cross ratio): 7,8

Z1=@. ZL+B) @. ZL+D)-l

Y1=(DYL+C)~ BY L+A)-l

(6)

(7)

rM~ - rM2

/

rM3 - rM2 rxl -rx2

/

rx3 - rx2
— (3)

rMl - rM4 ‘M3 - ‘M4 rxl - rx4 rx3 - rx4

where A, B, C, D are the n x n quadrants of the 2n x 2n chain-matrix

K of the embedding supernetwork N, as defined by:3. THE UBIQUITOUS FRACTIONAL BILINEAR
MATRIX TRANSFORMATION

VJ

{

A[B ‘J
.-— . -- f--- -–
-IJ CID ‘IJ

Recently 1~2~5 a multidimensional complex fractional bilinear
matrix transformation was introduced in the form:

=K. (8)

( )( )
-1

SM = T~.SX+T2 T3.SX+T4 (4)

A :Yl z,, YL

where the matrices SX, SM and Ti (i = 1, 2, 3, 4), are all complex
n x n square matrices. The transformation of equation (4) was proved
to represent the mapping of the complex n x n scattering matrix SX, of
an n-port load-network X, to the corresponding transformed input
scattering matrix SM, seen at the input of a 2n-port supernetwork N
(Figure 3). EIdl

“-FORT
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NEIWORK

L

(EMBEDDED)The n x n complex scattering matrix SM appears at the ports 1,

2, .... n that constitute the input interface of the embedding super-
network N, when the load-network X is connected to the remaining
ports n + 1, n + 2, .. .. 2n, at the output interface of the embedding
supernetwork N. The supernetwork N is represented in equation (4)
by its complex 2n x 2n transfer-scattering matrix:

lNpuT—/ OUTPUT_.__JINTERFACE INTERFKE
I I

T1 [ T2
T= --#---

T3 ; T4
(5)

where, the Ti’s (i = 1, 2, 3, 4) are the four n x n blocks or “quadrants”

of the matrix T. An interesting aspect of the transformation of equa-

tion (4) is that the individual n x n blocks or quadrants Ti (i = 1, 2, 3,
4), of the transfer scattering matrix T, separately appear as matrix-

parameters of the fractional bilinear matrix transformation linking SM
to Sx.

2,=( AZ.+ B)(C. Z,+ D)-1 Y,=(D. YL+C)(IS. YL+A)-l

Figure 4. Transformation of an n x n complex impedancs matrix ZL or of an

n x n complex admittance matrix YL through a 2n-POrt transforming

network N. The network N may be thought of as (embedding or

encircling the load-network L totally and is characterized by a

2n x 2n ABCO or chain-matrix K with n x n quadranrs A, B, C, D.
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Two more, as yet unpubhshed, results have now been obtained.

These new results describe the embedding of a 2n-port load-network X,

1 < i < n; and ports J: n + 1 <j < 2n). In equation (9) the quadrants

T,’, of the modified 4n x 4n T-matrix T’ of the supernetwork N, are

by a 4n-port supernetwork N (Figure 5), in terms of the mapping of d&fined by:
its transfer-scattering matrix TX, or its chain-matrix Kx.

,=, ,”

, = .+1 ..2 h

1, = 2., , ,.., ?“

k = i.., ,,,, 4.

T. = (T, , T, + T,) (T,, Tx . T,,,-] KM = (X Kx + B’, (C, K, + L@

Figure 5. Transformation of a 2n x 2n complex transfer scattering matrtx Tx

or of a 2n x 2n complex chain matrax Kx through a 4n-port

transforming network N. The transforming network N may be

thought of as embeddmg or encircling the load-network totally

and is characterized by the modified 4n x 4. matrix T’ or the

modnf ted 4n x 4n matrix K. The matrices 1’ and K’ are

orthogonal transformations of the T-matrix T and of the

chain-matrix K, respectively.

In the frost of these new results, the embedded 2n-port network X

N represented by Its transfer-scattering matrix Tx, and the 4n-port
embedding supernetwork N is represented by a modified 4n x 4n T-
matrix T’, with quadrants Ti’ (] = 1, 2, 3, 4), This first result may be

written in the form.

TM = (TI’TX+T 2’) (T3’. TX+ T4’)-] (9)

where TM represents the mapping of the T-matrix TX from the two

output interfaces of the supernetwork N (ports h: 2n + 1 < h < 3n;
and ports k’ 3 n + 1 < k < 4n) to the two input interfaces of N (ports i.
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where P1 is the orthogonal block-permutation matrix:
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Similarly, in the second new result, the embedded 2n-port net-
work X is represented by its 2rr x2nchain-matrix KX and the4n-port
embeddmg supernetwork Nis represented by amodified4n x4n chain-
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KM = (A’ KX+B’) (C’ KX +D’) ‘1 (12)
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A’ [ B’ AIB

K’ = --;–- =p:, K. P2=pT. --i-- . P2 (13)

C’ / D’ CID

where P2 is the orthogonal and autoinverse block-permutation matrix:

II
I :o:o_:Q-—-

p = .01!? l-I_;!
0,1,00

(14)

+._l_ J--
01010 !-1
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input interface (for SM and TM), respectively. This “compatibility”

of the norrnahzatlon bases means equality of the normalizing complex
impedances of corresponding ports, in the case of voltage-waves (travel-

ing waves) and, conversely, mutual complex conjugation of these
normalizing impedances in the case of power-waves.
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