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Abstract

Recent theoretical investigations reveal the dominant role played by a new type of matrix transformation in the theory of microwave networks
composed of multiport elements; this is an extension to multidimensional vector spaces of the well-known scalar fractional bilinear transforma-
tions. Projective matrix transformations have been found to map the scattering matrix, the impedance matrix, and the admittance matrix of an
n-port network embedded in a 2n-port supernetwork. The transfer-scattering matrix and the chain- or ABCD-matrix of a 2n-port network
embedded in a 4n-portsupernetwork, are also mapped in a similar manner by matrix transformations of the same type. A fundamental application
of this new transformation is the generalization of the concept of image-parameters known for 2-port networks to that of image-matrices for
2n-port networks. This generalization leads to a rigorous normal-mode analysis of wave-propagation on image-matched chains of cascaded 2n-

port networks.

1. INTRODUCTION

A new and relatively unknown matrix transformation has been
found to play a dominant role in the theory of microwave networks
composed of cascaded multiport elements. The new “‘fractional bilinear
matrix transformation” or “projective matrix transformation” was
first discovered in the form of a multidimensional mapping of a scatter-
ing matrix, in the context of an investigation of new types of error
modeling and calibration methods for automated network analyzers. 1,2
The extent of its relevance and the dominance of its role in the theory
of microwave networks, composed of multiport elements was, however,
not immediately recognized.

The ability of this type of matrix transform to map impedance
and admittance matrices was subsequently discovered, and led to an
extension of the well-known concept of image-impedance or image-
admittance to 2n-port networks. 3

The concept of image-matched, cascaded chains of 2-port networks
was then extended to that of chains of image-matched 2n-port net-
works, and a very general analysis of the normal wave-modes propagat-
ing on such chains was made possible.

Quite recently, the ability of the fractional bilinear matrix trans-
form to map the transfer-scattering matrix and the chain- or ABCD-
matrix of a 2n-port network, embedded in a 4n-port supernetwork,
was discovered.

One interesting aspect of these latest results is that the parameter-
matrices to be used as representations of the embedding supernetwork,
in the mapping of a T- or ABCD-matrix, are orthogonal transforma-
tions of the matrices to be used in mapping the corresponding S-matrix
or Z- and Y-matrices, respectively. The required orthogonal matrices
are block-permutation matrices.

It has also been discovered that the renormalization of the scatter-
ing matrix of a multiport network, with respect to a new and different
set of complex, external port-impedances may be considered equivalent
to embedding the network in an array of infinitesimally short, mis-
matched line junctions (a “cluster of junctions”).4 Here again, the
projective matrix transform provides a general description of the
scattering parameter transformation that performs the renormalization.

In view of the dominant role of the fractional bilinear matrix
transform in microwave network theory, a partial investigation of its
mapping properties has been conducted. Aspects of fundamental
interest are the invariance and conservation properties of the trans-
formation and their correlation to the response of the networks to be
considered.3

Many more applications of the new matrix transformation are
expected to follow from its recognition as a conspicuous, common
thread among seemingly unrelated developments.

2. THE WELL-KNOWN SCALAR FRACTIONAL
BILINEAR TRANSFORMATION

Scalar fractional bilinear transformations, defined as single-valued
functions of a complex variable, are well-known to microwave engi-
neers. In the theory of calibrated measurements of a complex reflection
coefficient T', this type of transformation is written in the form6:
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In this context, the transformation (1) represents the relation between
the true complex reflection coefficient I'x of a single-port network X
and the “‘uncalibrated” reflection coefficient reading Iy, observed in
an imperfect 4-port reflectometer (Figure 1). This measurement sys-
tem is composed of two cascaded directional couplers and a vector-
voltmeter, connected to their side-arms.

Assuming linearity of the vector-voltmeter readings with respect
to the complex ratio of the side-arm signals I'M, the given transforma-
tion (1) represents the effects of any mismatch, finite directivity or
imperfect mutual tracking of the two directional couplers, and of
any magnitude-ratio and phase errors in the vector-voltmeter.
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Figure 1.

In the analysis of impedance transformers and matching networks,
the scalar fractional bilinear transformation is often written in the
form:
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In this context, the transformation, represented by equation (2)
expresses the complex reflection coefficient I'y, that appears at the
input port 1 of a given 2-port network N, when the output port 2 is
terminated with a single-port load-network with reflection coefficient
I’y (Figure 2).

The scattering parameters Sij, appearing in equation (2), character-
ize the 2-port network N that physically performs the transformation
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of the load-reflection I'L, connected at its output port, to the input
reflection I'y, appearing at its input port. A transformation of this type
represents the basis of the well-known Smith chart, in which case the
transforming network N is a simple segment of uniform, lossless trans-
mission line.

b l | a.
1 2
Ty =— r, = —
i } } LT,
I |
| |
N TRANSFORMING 21 LOAD
—_—— O NETWORK NETWORK
| N [ L
| |
| |
| |
| |
by | # 7] | by
t 1
by T11iTy ay Ll DET(S) y §y; ap
— —] = [— —j— —| - —_— = —— —_——_——t— . -
G| Ty 1Ty b, Sa1=8p 11 by
1 i
Ty T+ Tyy 8;; —DET(S) - 'y,
n = =
Ty " TL + Ty T-Sp 0y
Figure 2. Transformation of a complex reflection coefficient through a 2-port

network.

The scalar fractional bilinear transformation, exemplified in
equations (1) and (2), is known to possess at least two remarkable
properties. First, it maps circles in the complex I'x-plane to corre-
sponding circles in the complex I'y plane. Second, the Cross Ratio
of four arbitrarily chosen complex values in the I'x-plane, is equal
to the cross ratio of the corresponding points in the I'yy plane (con-
servation of the cross ratio): 7.8
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3. THE UBIQUITOUS FRACTIONAL BILINEAR
MATRIX TRANSFORMATION

Recently 125 a multidimensional complex fractional bilinear
matrix transformation was introduced in the form:
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where the matrices Sx, Sy and Tj (i 1, 2, 3, 4), are all complex
n x n square matrices. The transformation of equation (4) was proved
to represent the mapping of the complex n x n scattering matrix Sy, of
an n-port load-network X, to the corresponding transformed input
scattering matrix Sy, seen at the input of a 2n-port supernetwork N
(Figure 3).

The n x n complex scattering matrix Sy appears at the ports 1,
2, ..., n that constitute the input interface of the embedding super-
network N, when the load-network X is connected to the remaining
ports n + 1, n + 2, ..., 2n, at the output interface of the embedding
supernetwork N. The supernetwork N is represented in.equation (4)
by its complex 2n x 2n transfer-scattering matrix:
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where, the T;s (I = 1, 2, 3, 4) are the four n x n blocks or “‘quadrants”
of the matrix T. An interesting aspect of the transformation of equa-
tion (4) is that the individual n x n blocks or quadrants T;(i=1, 2, 3,
4), of the transfer scattering matrix T, separately appear as matrix-
parameters of the fractional bilinear matrix transformation linking Sy
to Sx.
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Figure 3. Transformation of an n x n complex scattering matrix Sy through a

2n-port transforming network. The transforming network N may be
thought of as embedding or encircling the load-network X totaily
and is characterized by a 2n x 2n transfer-scattering matrix T with

n x n quadrants T1, e, Tge

In references 1 and 2, a method was developed for computing the
four quadrants Tj of the matrix T from pairs of corresponding Sxj,
Smi matrices. This method provides a way for indirectly characterizing
the embedding supernetwork N from an external analysis of its trans-
formation properties. The method combines a generalized gaussian
condensation,? applied to a set of 4n2 homogeneous, scalar linear
equation, and an explicit solution of various linear matrix equations. 10

Subsequently,3 new fractional bilinear matrix transformations,
exemplified by equation (4), were found to describe the mapping of
the Z-matrix Z and of the Y-matrix Y, to the corresponding input-
interface Z- and. Y-matrices Z] and Y7, seen at the input interface of
2n-port supernetwork N (Figure 4). These new transforms may be
written in the form:

(a-z +8) ((7.zL+l))'1
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where A, B, C, D are the n x n quadrants of the 2n x 2n chain-matrix
K of the embedding supernetwork N, as defined by:
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Two more, as yet unpublished, results have now been obtained.
These new results describe the embedding of a 2n-port load-network X,
by a 4n-port supernetwork N (Figure 5), in terms of the mapping of

its transfer-scattering matrix Ty, or its chain-matrix Kx.
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Figure 5. Transformation of a 2n x 2n complex transfer scattering matrix Ty

or of a 2n x 2n complex chain matrix K through 2 4n-port
transforming network N. The transforming network N may be
thought of as embedding or encircling the load-network totally
and is characterized by the modified 4n x 4n matrix T' or the
modified 4n x 4n matrix K'. The matrices T* and K’ are
orthogonal transformations of the T-matrix T and of the
chain-matrix K, respectively.

In the first of these new results, the embedded 2n-port network X
1s represented by 1ts transfer-scattering matrix Tx, and the 4n-port
embedding supernetwork N is represented by a modified 4n x 4n T-
matrix T', with quadrants Ti' (1 = 1, 2, 3, 4). Thas first result may be
written in the form-

Tm = <T1"Tx +T2') <T3"TX+T4'>

where Ty represents the mapping of the T-matrix Ty from the two
output interfaces of the supernetwork N (ports h: 2n + 1 <h < 3n;
and ports k* 3 n+ 1 <k <4n)tothetwo input interfaces of N (ports i.
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Similarly, in the second new result, the embedded 2n-port net-
work X is represented by its 2n x 2n chain-matrix K x and the 4n-port
embedding supernetwork N is represented by a modified 4n x 4n chain-
matrix K', with quadrants A', B', C', D'. This second result may be
written in the form:

Ky = (A' KX+B') (c’-Kx+D') ) (12)
where Ky represents the mapping of the chain-matrix Kx of X from
the two output interfaces of the supernetwork N (ports h, k) to the two
nput interfaces of N (ports 1, j).

In equation (12) the quadrants A’, B', C’, D' of the modified 4n x

4n chain-matrix K’ are defined by-
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The transformations of equations (6), (7) and (12) are uncondi-
tionally true in the embedding situations of Figures 4 and 5, respec-
tively. The transformations (4) and (9) are true, under the condition
that the bases of normalization for the matrices Sx and Sy or Tx and
TM are “compatible” with those of the matrices T or T' of the embed-
ding supernetwork N at 1ts output interface (for Sx and Tx) and its
input interface (for Sy and Ty), respectively. This “compatibility”
of the normalization bases means equality of the normalizing complex
impedances of corresponding ports, in the case of voltage-waves (travel-
ing waves) and, conversely, mutual complex conjugation of these
normalizing impedances in the case of power-waves.
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